Question -

Given positive integers r > 1, n > 2 and the coefficient of (3r)th and (r + 2)th terms in the binomial expansion of $(1 + x)^{2n}$ are equal. Then, (1980, 2M)

(a)
$$n = 2r$$

(b)
$$n = 2r + 1$$

(c)
$$n = 3r$$

Ans - A Solution -

In the expansion $(1+x)^{2n}$, $t_{3r} = {}^{2n}C_{3r-1}(x)^{3r-1}$

and

$$t_{r+2} = {}^{2n}C_{r+1}(x)^{r+1}$$

Since, binomial coefficients of t_{3r} and t_{r+2} are equal.

$$C_{3r-1} = {}^{2n}C_{r+1}$$

$$\Rightarrow$$
 3r-1=r+1 or 2n = (3r-1) + (r+1)

$$\Rightarrow$$
 $2r = 2$ or $2n = 4r$

$$\Rightarrow$$
 $r=1$ or $n=2r$

But
$$r > 1$$

 \therefore We take, n = 2r